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We consider the effect of isotopic labeling on the electric charge distribution and dynamics of the formic
acid dimer. Our investigation is based on accurate ab initio calculations of vibrationally induced dipole moments
and multidimensional quantum calculations of vibrational ground-state splittings. It is found that non-negligible
dipole moments of ¢ = 0.032 D and ¢ = 0.021 D arise in HCOOH—DOOCD and HCOOH—DOOCH,
respectively, suggesting the feasibility of microwave studies. Within the reaction surface Hamiltonian approach
a ratio of splittings of 1:0.2:0.045 is predicted for HCOOH—HOOCH:HCOOH—-DOOCH:HCOOD—DOOCH.

I. Introduction

The goal of this paper is to investigate the effect that an
asymmetric replacement of hydrogen by deuterium has on the
electric charge distribution and dynamics of the formic acid
dimer (FAD). From a practical point of view, asymmetric
deuterium labeling induces a small but detectable vibrational
dipole moment in a molecule that otherwise has no perma-
nent dipole moment. Such labeling, hence, opens the route
toward studies in the microwave (MW) region. From a more
fundamental point of view, by affecting the size of the tunneling
splittings, isotope substitution provides information on the type
of dynamics involved. Specifically, in an asymmetrically
deuterated dimer of formic acid a change from synchronized to
unsynchronized motion of the two hydrogens may occur.

Due to the prototype character of FAD,' several experimental®®
and theoretical studies’'> have focused on obtaining accurate
structural and spectroscopical parameters for the regular and
symmetrically deuterated dimers. From the experimental side,
early electron diffraction work of Almenningen et al.? revealed
two asymmetric hydrogen bonds with hydrogen bond distances,
O—H---0, of 2.703 A. The rotational constants of DCOOH—
HOOCD have been determined by Madeja and Havenith? using
high-resolution IR spectroscopy and the MP2/TZ2P structure
proposed by Neuheuser et al.® Rotational parameters for the
regular dimer, HCOOH—HOOCH, were obtained by Matylitsky
et al.* using degenerate four wave mixing and assuming the
dimer structure of Chocholouov4 et al.” and subsequently by
Ortlieb et al.’ Recently, the rotational constants for DCOOD—
DOOCD have been reported by Havenith and co-workers.® In
the case of the regular dimer a very good agreement between
the two sets of experimental parameters is found, as well as
between the theoretical and experimental structures. Between
the latter the largest deviation is found for the B constants which
reflects the difference in the interoxygen distances between the
experimental value of 2.696 A5 and the MP2/TZ2P® value of
2.672 A. These experimental data allow us to estimate the
reliability of the vibrationally averaged dipole moment calcula-
tions in four asymmetrically deuterated dimers: HCOOH—
DOOCH, HCOOH—HOOCD, HCOOH-DOOCD, and
HCOOD—HOOCD. Here we assume that the dipole moment
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in asymmetrical dimers arises solely from the vibrational motion,
i.e., from the different composition and anharmonicity of normal
modes.

The second part of this work concerns the computation of
the vibrational ground-state splittings in formic acid dimer
isotopologues. Primarily we focus on HCOOH—DOOCH, a HD
transfer system. Unfortunately, there are no measurements of
tunneling splittings in any of the three possible HD transfer
dimers that would directly address the problem of synchronized
versus unsynchronized proton motion. To complete the picture
of tunneling in FAD we computed also the ground-state splitting
in a double deuterium transfer system for which Havenith and
co-workers® estimated that the ground-state splitting is below
0.002 cm™L.

Taking into account that accurate, full dimensional calcula-
tions of the tunneling splittings in FAD are still beyond the
reach of quantum dynamics, we shall predict the magnitude of
the ground-state splittings by comparing the results obtained
by using the reaction surface Hamiltonian (RSH) approach'3-!3
on two potential energy surfaces (PES) with experimental data.
Previous studies by Barnes et al.!*!® and Matanovi¢ et al.!>!
on the regular dimer revealed that the three-dimensional (3D)
reaction surface dominates the tunneling dynamics. Namely, the
exact size of the splittings depends sensitively on the number
and symmetry of the bath modes included in the computation,
but the contribution of symmetric and antisymmetric modes
largely cancels out. For example in HCOOH—HOOCH the
ground-state splitting computed on the 3D reaction surface is
A® =0.197 cm ™! at the B3LYP/6-311++G(3df,3pd) level of
theory, while the splitting computed on a 5D surface involving
the two most strongly coupled modes, the symmetric and
antisymmetric OH stretchings, is A’® = 0.170 cm™". The small
difference is a consequence of opposite contributions coming
from the suppressing, antisymmetric OH stretch (A*° = 0.163
cm™!) and promoting, symmetric OH stretch (A*P = 0.266
cm™ ).

Here we consider only the reaction surface dynamics and
estimate the actual size of the splittings by comparing results
obtained on PES of different quantum chemical levels with
available theoretical and experimental data. Within the general-
ized approximation to the reaction path (GARP) method'® we
spanned the reaction surface by a set of mass weighted internal
coordinates known as the Hirschfelder “mobile”.?*->> These are
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obtained via an optimization procedure which minimizes the
number of coordinates needed to contain the intrinsic reaction
path (IRP) for proton transfer. In all formic acid dimer
isotopologues the analysis of the IRP reveals that the two
particles are transferred synchronously. In the case of HD
transfer, one may question the validity of this assumption,
primarily on the grounds of different anharmonic couplings
acting on the OH and OD stretches. Here the full dimensionality
of ab initio molecular dynamics** may help for such calculations
do not favor a priori a reaction path. In the case of
HCOOH—HOOCH, Markwick et al.>* have shown that the
proton transfer is concerted as obtained from the IRP, but
unfortunately there are no Car—Parrinello calculations on HD
transfer systems available for comparison. We hope that by
combining the theoretical results presented in this paper with
MW or IR measurements of the ground-state splittings in HD
systems one will be able not only to validate the concerted
proton transfer mechanism assumed in this work but also to
shed new light on the tunneling dynamics in general.

II. Electronic Structure Calculations

Within the Born—Oppenheimer approximation the regular and
symmetrically deuterated isotopologues of the formic acid dimer
have no permanent dipole moments. In asymmetrical iso-
topologues such as HCOOH—DOOCH, HCOOH—HOOCD,
HCOOD—HOOCD, and HCOOH—DOOCD the electronic
dipole moment is vibrationally induced. To compute the
vibrationally averaged dipole moments {u) a second-order Taylor
series expansion with respect to the normal coordinates Q; is
performed

w=n+3(fafer+ 53 FGgle) o
The normal mode expectation values (Q;) and (Q,Q;) are
computed using perturbation theory as in refs 24 and 25

—_h P 1
Q)= 4601-2; wf(uj+ 2) (2)

and

(0,0)= ,,(u,+ a 3)
where ¢;; are cubic anharmonic force constants computed by
two points numerical derivation of displaced Hessians. The
above procedure is implemented in the Mainz— Austin—Budapest
version of ACES II program.?®

The calculations were performed at the MP2 level of theory
with the DZP,*® TZP,»3° and cc-pVTZ*' basis sets. The
molecular geometry of the regular dimer (HCOOH), was
optimized within the constraint of C,, point group symmetry
and without it. No difference in the optimized geometries was
found. The dipole moments for the four isotopologues were
calculated at the optimized geometry. The effects of temperature
were accounted for as a rotational contribution to the average
value of a normal coordinate {Q;)** and evaluated at 100, 200,
and 300 K.

For the tunneling splitting computations, the 3D PESs for
HCOOH—-DOOCH and HCOOD—DOOCH were generated by
using density functional theory (DFT) with the B3LYP func-
tional and the 6-311++G(3df,3pd) and 6-31+G(d) basis sets
as implemented in GAUSSIAN 03.32 Both basis sets have been
used in a number of previous publications'®!>17:1933-35 which
allows a direct comparison between different methods as well
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as an estimate of the splitting in real systems. For the estimate
it is important to note that with respect to the reference
CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ calculation of Tau-
termann et al.!® predicting a barrier to proton transfer of AE =
2763 cm™! the B3LYP/6-314+G(d) method overestimates the
barrier as AE = 2938 cm™!, while B3LYP/6-311++G(3df,3pd)
yields a barrier of only AE = 2273 cm™ . It is well-known that
computed tunneling splittings are very sensitive to the shape of
the underlying PES and in particular to the barrier to proton
transfer. Hence by selecting the B3LYP functional and the two
basis sets we do not attempt to obtain an exact value of the
ground-state splitting that can be directly compared to experi-
ment but to provide a lower (B3LYP/6-31+G(d)) and upper
(B3LYP/6-311++G(3df,3pd)) bound to the actual splitting.
Note that for this reason the barriers to proton transfer have
not been corrected for the basis set superposition error (BSSE).
In the case of the 6-314+G(d) set, the BSSE correction is quite
large and amounts to 431 cm™!; i.e., the counterpoint corrected*®
B3LYP/6-314+G(d) barrier is AE = 2500 cm™!,!" which is too
low for the purpose of our calculation.

III. Computation of Tunneling Splittings

III.1. The Choice of Coordinates. The derivation of the
reaction surface Hamiltonian in terms of Hirschfelder “mobile”
coordinates has been described in detail in a previous publica-
tion.!” The main features of the method are presented below.

We start by imposing the Eckart conditions to the IRP
geometries to approximately separate the vibrational and
rotational motion. The goal is to construct a reaction surface of
minimum possible dimension that fully contains the IRP.

Mass-weighted vectors S; defined as

N
Sia= Z Wii\/’"j’"ja 4)

are a convenient choice for spanning the reaction surface. Here
N is the number of atoms, m; is the mass of the jth particle, F
is a N x 3 matrix of Cartesian coordinates, and W is an
orthogonal matrix to be determined. Note also that any unitary
transformation applied to a set of vectors S; produces another
acceptable set of vectors

N—1
new Sj (5)

J=1

Thus within an optimization procedure a new, “skewed” set of
coordinates, S;"°" can be obtained in which a smaller number
of coordinates may be required to span the reaction surface.
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C, C

04 Do Os

Figure 1. Structure of HCOOH—DOOCH at the transition state
(B3LYP/6-311++G(3df,3pd)) and numeration of atoms.
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Let us now consider a related set of coordinates Z; defined
with respect to the transition state structure. The vector Zy =
(Zn 2y yZy,;) With elements

N
1 -
Zyo= 1\72 Myt o (6)

Ni=1

is fixed and corresponds to the center of mass, while the other
N — 1 vectors can be expressed as

N
Zi,a = 2 Tij ~j,0L (7)

where T is an N x N mass-dependent transformation matrix
with elements Ty; = my/My. For HCOOH—DOOCH shown in
Figure 1, our initial choice of symmetry adapted coordinates is

Z, =t —1t,+1,—T,
Z, =7t +1,—1;,—T,

= I3 I

v

Z
7, =1;—T1,
- 1. .
Z5=r9—§(r3+r6)
- 1. .
Zézrlo—z(r4+r5)

7 — Fome+1tmy  Fome+Famy
= —

me+my me—+my

_ Tymg + Fgmg + Fgmy By +Fgmy +F ymp

my +2mg mp+ 2mg,

z (Fy +F, +F5+Fmg + Fgmy + F gy
9 -

4me + my +myp
(F, +Fyme + (F; + Fomy
2my + 2m

(®)
The orthogonal vectors S are now constructed as

Sia=NZig ©
where the diagonal matrix u given by

u'=Tm "(Tm )" (10)
is obtained from eqs 9 and 4 and the orthogonality condition
WW’ =L

Taking into account that we wish to minimize the number of
coordinates required to span the reaction surface and that the
double proton transfer in FAD is an in-plane process, it is more
convenient to decompose S; into components as

3N -
S, =X Wlmyr, (11)
J

where now the Cartesian coordinates are organized as a 3N
vector

— T
r_(-xla-x27 "'7-xN7y1’y25 "-7yN721722’ '-"ZN) (12)

and W is a corresponding 3N x 3N block diagonal matrix.

IILI.2. Construction of the Reaction Surface. Starting from
the initial set of coordinates S;, we derive a new set S;"°" tailored
to describe the proton transfer reaction. The optimizing proce-
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dure is based on a series of kinematic rotations between pairs
of coordinates S; through an angle 6

SV =35 cos(0) + S, sin()
§m% = —§, sin(6) + §; cos(6) (13)

In each rotation the angle 0 is optimized in such a way as to
minimize the change of the coordinate S;™"

min(max(S;""(p)) — min(S,""(p))) (14)

along the p = 70 symmetry unique IRP geometries. For each
class of vectors 2500 kinematic rotations were performed, with
self-consistency reached after ~1100 rotations. Note that in ref
19 an optimized procedure of kinematic rotations was used to
obtain a hierarchically organized set of coordinates, while here
a random series of rotations was applied. As for the regular
dimer, we found that three coordinates change considerably
along the IRP. They are denoted S, S,, and S5 and span the
reaction surface part of the Hamiltonian
v &
RS _ B_

H ——gizlgiz-i-V(Sl,Sz,SyS =0) (15)
while the remaining S;, i = 4, 5,..., 3N — 6 coordinates that are
approximately constant along the IRP constitute the bath and
are denoted as SP.

IV. Results and Discussion

IV.1. Rotational Constants and Dipole Moments. Our first
goal is to compute the vibrationally induced dipole moments
in four formic acid isotopologues. Due to the numerical effort,
i.e., the number of times that the Hessian matrix needs to be
calculated in order to obtain full cubic force field (eq 1), the
calculations were performed at the MP2 level of theory with
moderate basis sets: DZP, TZP, and cc-pVTZ. Hence, in order
to validate the results, we first computed the rotational constants
of the regular dimer at the same levels of theory and compared
them to the experimental values® as well as to theoretical
rotational constants that so far gave the best overall agreement
with the experiment.® The latter correspond to the structural
parameters obtained by Neuheuser et al.® at the MP2/TZ2P level
of theory. The orientation of the formic acid dimer in the main
axis system is shown in Figure 2, and the results are presented
in Table 1. One sees that the ground-state vibrational constants,
Xy (X = A, B, C) calculated at the MP2/DZP level compare
favorably with experiment, with errors of 0.01—0.53%. Larger
deviations are found for both the MP2/TZP and MP2/cc-pVTZ
results. Of course, the good agreement of MP2/DZP with

Y

Figure 2. Structure of HCOOH—HOOCH at the minimum (MP2/).
Principle axes of inertia are displayed.
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TABLE 1: Calculated Equilibrium, X, and Ground State,
Xo, Rotational Constants of the Regular Dimer,
HCOOH—-HOOCH

constant method Alem™  B/em™! Clem™
Xe MP2/DZP 0.20263  0.07670  0.05564
Xe MP2/TZP 0.20280  0.07544  0.05498
Xe MP2/cc-pVTZ 0.20243  0.07802  0.05631
Xe MP2/aug-cc-pVTZ 0.20130  0.07712  0.05576
Xe MP2/aug-cc-pVQZ  0.20243  0.07714  0.05586
Xe CCSD(T)/ce-pVTZ  0.20248  0.07728  0.05593
Xo MP2/DZP 0.20135 0.07645 0.05541
Xo MP2/TZP 0.20153  0.07516  0.05475
Xo MP2/cc-pVTZ 0.20120  0.07809  0.05627
X! CCSD(T)/DZP 0.20120  0.07703  0.05571
X CCSD(T)/TZP 0.20121 0.07701 0.05570
X CCSD(T)/ce-pVTZ  0.20125 0.07736  0.05566
Xe MP2/TZ2P? 0.20171 0.07656  0.05550
experimental® 0.20241  0.07635  0.05542

“The CCSD(T) ground-state constants were calculated by using
corresponding MP2 ground-state corrections, X, — X. ” Reference
8. “ Reference 5.

experiment is due to favorable cancelation of errors that appears
when MP2 is combined with small basis sets. Further we
computed the CCSD(T)/cc-pVTZ equilibrium rotational con-
stants (X.) and converted them to ground-state values by using
the vibrational corrections (X. — Xo, X = A, B, C) evaluated at
the MP2/cc-pVTZ level.3” From Table 1 it is apparent that the
overall agreement with experiment has not been improved and
that the MP2/DZP level should provide a reliable estimate of
the dipole moment in FAD isotopologues.

Vibrationally averaged dipole moments of the four FAD
isotopologues are presented in Table 2. The values u, and u,
correspond to the dipole components along the inertial axes a
and b. It is found that, independently of the level of computation,
the dipole moment decreases in the order u(HCOOH—DOOCD)
> u(HCOOH—DOOCH) > y(HCOOH—HOOCD) ~ u(HCOOD—
HOOCD). Comparing different basis sets we see a difference
of ~20% in the values of the dipole moments with TZP
predicting consistently smaller and cc-pVTZ larger dipole
moments. Specifically, for HCOOH—DOOCD total dipole
moments, u, of 0.0322, 0.0280, and 0.0374 D are found at the
MP2/DZP, TZP, and cc-pVTZ levels, respectively. The largest
dipole component is directed along the « axis, i.e., in the proton
transfer direction.

At vibrationally averaged geometries the dipole moments are
negligible. Hence, in FAD dimers as in other molecules with
no permanent dipole moment, the dipole comes from the
derivatives of u along the normal modes.*® Inspection of the
individual normal mode contributions reveals the modes that
are responsible for the onset of the dipole moment. As expected,
the largest contribution arises from the difference between the
dipole moments along the OH and OD stretching normal modes.
These are strongly anharmonic vibrations sensitive to isotope
substitution. In the monodeuterated HCOOH—DOOCH the

TABLE 2: Dipole Moment Values at Various Levels of Theory”
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Figure 3. Projection of the IRP of HCOOH—DOOCH on the 3D

reaction surfaces (S;, S,, S3) and changes of the reaction coordinates
along the IRP.

v(OH) and v(OD) stretching contributions to the total dipole
moment are 0.0617D and —0.0502 D (MP2/cc-pVTZ), respec-
tively. On the contrary, in HCOOH—HOOCD where the dipole
moment arises from the ¥(CH) and v(CD) stretchings these
contributions are much smaller being ucy = 0.0151 D and ucp
= —0.0119 D. It is clear that HCOOH—DOOCD and
HCOOD—HOOCD contain the four modes that contribute most
to the onset of the dipole moment. The total dipole moment is
maximized in HCOOH—DOOCD where the dipoles arising
from the difference of the OH/OD and CH/CD contributions
sum up, whereas it is minimized in HCOOD—HOOCD where
these contributions cancel out. Regarding temperature effects,
due to compensation of rotational and vibrational effects in
HCOOH—-DOOCD and HCOOH—HOOCD the dipole moment
values changes slightly, by ~6% over a 300 K temperature range
whereas it increases by 15% and 20% in HCOOH—DOOCH
and HCOOD—HOOCD, respectively.

We conclude this section by noting that the vibrationally
induced dipole moment in HCOOH—DOOCD has a small, but
non-negligible magnitude. The values of 4 = 0.0322 D and u«,
= 0.0317 suggest that it is feasible to recover the rotational
spectrum of the dimer and directly measure the splitting of the
ground-state levels.

IV.2. Ground-State Tunneling Splittings. Let us now focus
on tunneling. Figure 3 displays the projections of the IRP on

MP2/DZP MP2/TZP MP2/cc-pVTZ

dimer Ua y u Ha Uy u Ha Uy u
HCOOH—DOOCD 0.0317 0.0056 0.0322 0.0275 0.0052 0.0280 0.0371 0.0045 0.0374
HCOOH—DOOCH 0.0194 0.0070 0.0206 0.0164 0.0068 0.0178 0.0250 0.0061 0.0258
HCOOH—HOOCD 0.0121 —0.0011 0.0121 0.0109 —0.0015 0.0110 0.0119 —0.0014 0.0120
HCOOD—HOOCD 0.0074 0.0080 0.0109 0.0056 0.0081 0.0098 0.01312 0.0074 0.0150

“Values in Debye at 7= 0 K.
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Figure 4. The Cartesian displacement vectors corresponding to the mass-weighted internal coordinates Sj, S,, and S;.
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Figure 5. The 3D reaction surface V(Sj, S,, S3) for double deuterium transfer in HCOOD—DOOCH and the corresponding IRP (solid line). The
coordinates are in ag(a.m.u.)"?. The innermost contour is at 806.5 cm™, the outermost at 7259 cm™!, and the spacing is 806.5 (1613) cm™! between

the three inner (outer) contours.

the 3D reaction surfaces (S, S,, S3) for HCOOH—DOOCH
together with the changes of the reaction coordinates along the
IRP. The Cartesian displacement vectors corresponding to the
internal coordinates S; are shown in Figure 4. The three vectors
have Cg symmetry with S; and S5 being antisymmetric and S,
being symmetric with respect to HD transfer. On the first glance
it is apparent that the changes of Sj, S,, and S5 in HCOOH—
DOOCH are very similar to those in HCOOH—-HOOCH."
However, when analyzing the Cartesian displacements of the
three S; coordinates (eq 11), we see that the random kinematic
rotation procedure leads to asymmetric coordinates S; and S3

that both decompose into a HD transfer contribution and a
contribution from the rearrangement of the molecular frame.

To assess the quality of the 3D reaction surfaces constructed
using the optimization procedure described in section II1.2, we
computed the root-mean-square (rms) deviation between the IRP
geometries and their projection on the 3D reaction surface'?>*
spanned by (S, S,, S3). By definition the rms difference vanishes
at the transition state (p = 0). For the asymmetrically deuterated
dimer HCOOH—DOOCH at the B3LYP/6-311++G(3df,3pd)
level the rms difference at the minimum, p = £3.44, (a.m.u.)"?
is below 1 cm™! while a maximum deviation corresponding to
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TABLE 3: Computed and Experimental Tunneling
Splittings for Different FAD Isotopologues

transferring particles method AE/cm™!

HD B3LYP/6-311++G(3df,3pd) 0.038621
HD B3LYP/6-31+G(d) 0.000627
HD estimate 0.003
DD B3LYP/6-311++G(3df,3pd) 0.008996
DD¢ experiment <0.002
DD estimate 0.0007
HH? B3LYP/6-311++G(3df,3pd) 0.1970
HH? B3LYP/6-31+G(d) 0.0032
HH¢ experiment 0.0158

@ Reference 6. ” Reference 12. ¢ Reference 3.

30 cm™! is found for the geometries at p = £2.1a, (a.m.u.)".
The deviation between the IRP and its projection is negligible
when compared to the B3LYP/6-311++G(3df,3pd) barrier to
proton transfer of AE = 2273 cm™'. However, the error is larger
than the maximum energy difference of Agp = 7 cm™! found
between the IRPs of the mono- and dideuterated dimers,
HCOOH—-DOOCH and HCOOH—DOOCD. In other words,
within the 3D reaction surface the two species are indistinguish-
able and in order to distinguish between them the normal modes
corresponding to C—H/C—D stretchings and/or bendings need
to be explicitly included in the Hamiltonian. From the experi-
ments of Havenith and co-workers*> we know that the replace-
ment of hydrogen by deuterium in the C—H bonds causes a
reduction of the ground-state splitting by ~20%, from A =
0.0158 cm™! in HCOOH—HOOCH to A = 0.0125 cm™! in
DCOOH—HOOCD. In the present investigation we are con-
cerned with larger effects for the replacement of one or both
bridging hydrogens is expected to affect the ground-state
splittings by more than an order of magnitude.

The ground-state splitting is calculated as the difference
between the two lowest eigenvalues of the Hamiltonian given
in eq 15. To achieve convergence of the splittings the V(Sy, S,
S3) surfaces were generated on the basis of 1549 symmetry
unique single energy points, gradients, and Hessians for
HCOOH—-DOOCH and 1839 for HCOOD—DOOCH. In both
cases the PES were interpolated using the weighted Shepard
interpolation scheme® on a 85 x 93 x 39 grid in the range (ag
(am.u.)?): =7.600 < S, < 7.600, —2.100 < S, < 14.500,
—3.150 = §3 = 3.150 for HCOOH—DOOCH and —7.650 =
S; =7.650, —1.900 = S, < 14.600, —3.500 = S5 < 3.500. The
3D reaction surface V(S;, S, S3) for HCOOD—DOOCH
exhibiting a characteristic butterfly shape is shown in Figure 5.
The time-independent Schrédinger equation was solved using
the grid Hamiltonian method***! combined with the implicitly
restarted Lanczos diagonalization method*? as implemented in
the ARPACK code.¥#

Table 3 compiles the tunneling splittings of HCOOH—DOOCH
and HCOOD—DOOCH and compares them to corresponding
theoretical and available experimental results. As expected,'? a
strong basis set dependence of the ground-state splittings
is found, because the PES computed at the B3LYP/6-
3114++G(3df,3pd) and B3LYP/6-31+G(d) levels are character-
ized by very different barriers to proton transfer, of 2273 and
2938 cm™ !, respectively. The computed ground-state splittings
thus provide an upper and a lower bound for the actual splitting,
in the same way as the two HH splittings of ref 12 computed
on the same levels of theory compare to the experimental value
of Ortlieb and Havenith.> Here we take advantage of the
constancy of the ratio between the splittings AgsLyp/e—31+G(ay
AB3LYP/6—311++G(3df,3pd) of 0.01624 for HH and 0.01623 for HD
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to estimate the actual splitting in HD. On the basis of the
assumption that the tunneling dynamics is well described by
the reaction space V(S;, S,, S3) encompassing the IRP, we
estimate the splitting in HD as A = 0.003 cm™!. This result
finds good agreement with the B3LYP/6-31+G(d) instanton
tunneling splitting of A = 0.0025 cm™! obtained by Smedarchina
et al.** Note also that according to our result the HD splitting
can be resolved in IR high-resolution experiments.’

In HCOOD—DOOCH the two moieties are embedded in an
equivalent anharmonic coupling environment where one expects
a larger cancelation of promoting and hindering bath mode
contributions than in the HD case. For DD tunneling the splitting
has been computed at the B3LYP/6-311++G(3df,3pd) level
only, and a splitting of 0.008996 cm™' has been obtained. We
expect the splitting at the B3LYP/6-314+G(d) to be smaller by
approximately an order of magnitude and hence on the border
of accuracy of the present calculation. Assuming a ratio of
12.468 for the computed versus measured splitting, as in the
HH case, an estimate of A = 0.0007 cm ™! for the ground-state
splitting has been obtained. This prediction is in accord with
the estimate of Guberlet et al.® of a splitting below 0.002 cm™!,
as well as with the instanton result of Smedarchina et al.?

V. Conclusion

A combined electronic structure and multidimensional quan-
tum dynamical investigation of several formic acid dimer
isotopologues is presented.

It has been shown that the vibrationally induced dipole
moment in four asymmetrically deuterated dimers decreases in
the order u(HCOOH—DOOCD) > u(HCOOH—DOOCH) >
u(HCOOH—-HOOCD) ~ u(HCOOD—HOOCD). The value of
u = 0.032 D (MP2/DZP) obtained for HCOOH—DOOCD is
small, but non-negligible, and indicates that it may be feasible
to observe the rotational spectrum of the dimer.

We applied the GARP method to study the ground-state
splitting in HCOOH—DOOCH and HCOOD—DOOCH. On the
basis of a series of 3D reaction surface calculations a ratio of
splitting 1:0.20:0.045 was obtained for A(HCOOH—HOOCH):
A(HCOOH—DOOCH):A(HCOOD—DOOCH). The ratio was
obtained under the assumption that the tunneling dynamics is
dominated by a low dimensional reaction surface constructed
around the IRP for hydrogen/deuterium transfer. In all cases
the IRP corresponds to a synchronized motion of the transferring
particles. We hope that our results will stimulate new experi-
mental and full-dimensional theoretical investigations that could
assess the validity of this assumption.
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